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We first define, and then compute, the cutoff parameter R, for the additive white
Gaussian channel. This important channel parameter seems not to have been previously
computed for this important channel model, except in the case when the input is

restricted to be binary.

|. Introduction

The computational cutoff parameter R, has lately begun to
assume an important significance in communication systems.
It appears in many situations to measure a given channel’s
“quality” in a way that is superior, from a practical stand-
point, even to the capacity of the channel. It is our object in
this paper to compute the R, parameter for the important
additive white Gaussian channel (AWGC), which is, for
example, the appropriate channel model for deep-space com-
munication. This parameter is well known, when the channel
input is restricted to two levels:
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where E/N, is the signal-to-noise ratio (Ref.7, Eq.5-56).
However, R, seems not to have computed for the AWGC
when there has been no restriction on the number of channel
inputs.

In the next section we shall give what we feel is the correct
definition of R, for the AWGC, but also discuss the merits of

another candidate, the quantity R, discussed by Shannon
(Ref. 6). In Section III we shall prove that the input distribu-
tion achieving R, is always concentrated at a finite number of
points. Finally in Section IV we will give some numerical
values of R;.

ll. A Definition of Ro for the Gaussian
Channel

The additive white Gaussian channel (AWGC) can be
described as follows (Ref. 4, Chapter4): If . .., X_,, X, X,
X,,... denotes the input sequence and ..., Y_,, ¥,, ¥,
Y,,... the output sequence, we have Y, = X, +Z,, where
{Z,.}is a sequence of independent, identically distributed (iid),
mean zero, variance N0/2 random variables. The input
sequence is constrained in “average energy’ by requiring that
{X,} beiid, and E(X%) = A. It is convenient, and involves no
real loss in generality, to use the normalization V,/2 =1, and
we shall do so. Our goal in this section is to give a defensible

definition for the cutoff parameter R for this channel.

We first assume that the input distribution is given, viz.,
that F(x) is the cumulative distribution function for each of
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the random variables X,. Then according to Eq.(5.53b) in
Ref. 7, the cutoff parameter with respect to F is given by

R (F) = -log, f"“f‘” e'("'y)2/8 dF(x) dF(y)
1

Since the input distribution must satisfy the energy constraint

f ) x2 dF(x) = A, )

it is reasonable to define R, for the Gaussian channel by

R, = sup {R(F) : F satisfies (2)} 3)

Indeed this is the definition we take, and Sections III and IV
describe the solution to this mathematical optimization
problem. However, one cannot assert that the quantity so
defined is “R,” for the AWGC, without discussing a compet-
ing number discussed by Shannon (Ref. 6) in 1959. This we
now do.

There are numerous conjectures about the practical signifi-
cance of the cutoff parameter for a given channel (see for
example, Ref.3 or 5), but there are also two provable
theorems about R,. The first theorem is that for any rate R
less than R, then there exists a code of length n for which the
error probability is bounded by P[&] <2-7[Ro-R] (see for
example, Ref. 2, Chapter 5 for the discrete channel case of this
theorem.) It is true, and not hard to prove, that this theorem is
true for the AWGC with R, defined as in (3). However, in the
paper cited above (Ref. 6), Shannon proved that this theorem
remains true for what turns out to be a larger number; viz.,

. logze A 42
Ro =2 [“7 ar

+ %logz B (1 + /1 +ifi-2—)] @

Thus although our definition (3) is perhaps plausible, if one
defines R, to be the largest possible intercept of a line of slope
-1 which supports the reliability exponent E(R) for the given
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channel, then the quantity (4) is the correct definition.
However, there is another possible definition, which is derived
from a theorem with communications significance, which
favors our definition. The theorem deals with the expected
number of computations needed for a sequential decoding
algorithm.

In a celebrated paper on sequential decoding, Berlekamp
and Jacobs (Ref. 1) showed that there exists a certain rate,
called R ,pp,, which represents the supremum of all rates R
such that the average number of computations made by a
sequential decoder operating on a code of ratg R remains
bounded. They showed that Eq(1) S R o, < Eo(l) where

Ey(p) is a certain function which depends on the channel
statistics, and Eo(p) is the convex M hull of £,(p). For the
Gaussian channel, if the code being used must satisfy the
average energy constraint E(X2)< A, it is easy to show that
the parameter F (1) is precisely our definition (3) of R,. Now
for “ordinary” channels, the function £, is already convex,
and $0 Ry, = Eo(1). And we conjecture that this holds for
the Gaussian channel too, but have not yet been able to prove
it. If our conjecture proves to be correct, then our definition
(3) will have been proved to be the value of “R comp for the
AWGC, and incidentally will have been shown to be strictly
less than the “R,” for this channel.

In the next two sections, we will discuss the computation
of R, as defined by (3).

Ill. A Characterizationof R
We recall that R is defined as follows. If Q is defined as

the value of the program:
ffK (5, ) dFx) dF ),
. (x-2)*
KGx,y) =e B

f dF(x) = 1, ﬁcz dF(x) = A

where £ is a distribution function. Then Ry = - log, Q. In this
section we will show that the optimizing distribution F is
discrete, i.e., has mass at only a finite number of points.

minimize:

subject to:

We shall use the calculus of variations to find necessary
conditions that must be satisfied by an external distribution F.




If we use Lagrange multipliers ¢ and A for the two side
conditions, and apply a variation 8F to F, the variation of the

Lagrangian function
Q+ufx2dF— ?\de

Nl'_'

L =

is given by

8L =~é—6Q+u6fx2 dF - xade

Since we are looking for a minimum, 8L must be = 0 for all
admissible variations §F. Because the Lagrange multipliers
account for the two integral side conditions, the only
restriction on &F is that F+6F must be an increasing
function. Hence d(6F) can be concentrated at or near one
point, and must be nonnegative if this point is not in support
of dF(x). Hence we must have

ﬁ((x,y) dF + ux? - }\} d(8F)

$(x) = fK(x,y) dF(y) + ux? - x>0, all x, (&)

¢(x) = 0 )
at all points of support of dF.

We note that O <fK(x,y) dF(y) <1 for all x, and this
integral approaches zero as x — too, Thus if we divide (5) by x?
and let x — oo, we see that y = 0. Also, if x is in the support of
dF the integral in (5) is positive, and by (6), ¢(x)= 0. Hence
A>0. If p=0, then as x > oo, we would have ¢(x)—-A,
which contradicts (5). Hence in (5) we must have

>0, A>0 Q)

Now for any x in the support of dF, we see from (6) that
we? = x~f1<(x,y) dF(y) <A,

x% < Mu

Thus the mass of the distribution £ all lies in a bounded
interval. Thus ¢(x) is analytic, and so can have only a finite
number of zeroes on a bonded interval 0. But by (6) this
means that F has only a finite number of support points. This
is what we set out to prove.

In the next section we shall give some numerical values of
the function Ry,.

IV. Some Numerical Results

Once it is known that the optimizing distribution £ is
concentrated at a finite number of points it is possible to
program a computer to calculate R,. The number of points
needed is an increasing function of the parameter A, which we
denote by n(4). It turns out, for example, that n(4) =2 for
A <2.38586.

In the table below we list for k =2, 3, 4 the largest value of
A for which a k-point distribution is optimal:

k A(k)
2 2.386
3 5.292
4 8.6913

In the next table we list the actual value for Ry, as a
function of A. For reference we also tabulate Shannon’s
function Ry as given by (4).

A R, R,

0.0 0 0

0.5 0.1691 0.1692
1.0 0.3161 0.3169
1.5 0.4419 0.4456
2.0 0.5481 0.5583
2.5 0.6367 0.6578
3.0 0.7149 0.7464
3.5 0.7861 0.8260
4.0 0.8512 0.8982
4.5 09110 0.9461
5.0 0.9659 1.0247
5.5 1.0165 1.0808
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A R¥
6.0 1.0638 1.1330
6.5 1.1082 1.1817
7.0 1.1502 12274
7.5 1.1898 1.2704
8.0 1.2274 1.3111
8.5 1.2630 1.3496

9.0 1.2969 1.3861

9.5 1.3292 1.4210
10.0 1.3602 1.4542
10.5 1.3899 1.4860

These numbers should be compared to Fig. (5.18) in Ref. 7,
where “R,”" is computed using a set of equally spaced points,
each less in absolute value than /4. For the optimal
distribution the points are not in general equally spaced, nor
are they all less than /4.
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